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ABSTRACT

Composite accelerator electrodes offer potential
improvements in ion microthruster performance
particularly between specific impulses of 1800

and 3500 seconds. Various composite electrode
configurations were investigated for application
on cesium bombardment ion thrusters. Tests with
cesium thrusters were concentrated on three types
of electrodes: bonded metal-ceramic, glass-coated
metal, and glass-coated ceramic bonded to metal.
Techniques for brazing niobium to alumina were
adapted to this effort. Design constraints due to
anticipated launch vibrations were examined.
Design and performance considerations are discussed
along with operational test results.
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SUMMARY

This is the final report for NASA Contract Number NAS5-21023 'Composite

Accelerator Grid Investigation,'

supported by the Auxiliary Propulsion
Branch of Goddard Space Flight Center. The technical officer was

Mr. R. O. Bartlett. The program was directed toward investigating the
applicability of composite accelerator electrodes FQ cesium electron

bombardment ion thrusters.

Composite accelerator electrodes were found feasible for use with
Cesium bombardment thrusters, however additional development is needed

to extend the useful life of the electrodes.

The effort consisted of a study of designs and materials, development
of fabrication techniques, testing, and analysis. The material com-
binations selected for operational testing were niobium brazed to
alumina, alumina metalized with molymanganese. Corning code 1723
glass was also identified as an alkali resistant material, however,

no fabrication technique was developed.

A parallel effort by T. M. Heslin and A. G. Eubanks of the Advanced
Materials Branch at Goddard Space Flight Center, produced a bubble-
free glass coating on molybdenum accelerator electrodes and on alumina
insulators. Early glass coating processes which used Corning code‘
7052 glass were later modified for Corning code 1723 glass coatings.
The glass coated accelerator electrodes developed by Goddard Space

Flight Center were operationally tested at EOS.

Several operational tests, lasting up to 320 hours, helped identify

modes of operation and degradation; The primary modes of degradation
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were cracking of the insulator, both ceramic and glass, and coating of

the insulator with conductive material. These problems were attacked

and some interesting approaches have suggested themselves for the in-

vestigation. The most promising of these is an electrode formed by

coating a molybdenum-manganese/alumina electrode with Corning 1723

glass.
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KEY TO SYMBOLS

Symbol Interpretation
A Open area of entire accelerator electrode
C Center-to-center spacing of apertures
D Diameter of apertures
H Insulator thickness
J Conductor thickness
IB Beam current = !I+l —’ I_[
IB/A Beam current density
2
IB/NVGB/ Perveance per aperture
IB/VG3/2 Perveance
ISP Specific impulse
I+ Positive HV supply current
I Negative HV supply current, drain current
N Number of electrode apertures

Vacuum chamber pressure

P Arc power
Number of rows of apertures from center to edge
including center row

Diameter of active area of electrode

T Transparency (open area/total area)

TA Accelerator electrode temperature

TV Vaporizer temperature-

VG Screen to accelerator gap voltage

V+ Discharge chamber voltage, positive high voltage
V_ Accelerator voltage, negative high voltage

W Web thickness (C - D)

ﬂM‘ Mass efficiency
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SECTION 1

INTRODUCTION

Near term satellite missions will require propulsion system specific
impulses in the range of 1800 to 3500 seconds. For cesium electron-
bombardment ion thrusters, these specific impulses correspond to ac-
celeration voltages from 200 to 800 volts. Efficient ion acceler-
ating electrodes require corresponding aperture diameters from 0.030
to 0.076 inch. A corresponding insulating gap from 0.010 to 0.038
inch must be maintained between the high voltage plasma and the ac-
celerator electrode. Problems including aperture alignment and
warpage make the use of large conventional two grid systems difficult,
even when the electrodes are segmented and have spacers. As the
apertures become small the corresponding plasma-to-accelerator gap
also becomes small. On a conventional two electrode system this gap
must contain the screen electrode. This means that in order to main-
tain electrical isolation, as the hole diameter gets small, the
screen electrode must approach zero thickness and therefore is mech-
anically unstable. . Composite accelerator electrodes replace the
vacuum gap with an insulator and use the plasma sheath itself as the
screen electrode. Thisinsures alignment of the apertures and the

structural stability of the gap.

The research effort to develop a composite accelerator suitabie for
use with cesium thrusters was initially directed toward identifying
materials which are compatible with the hot cesium plasma for long
periods of time. The second step was to develop techniques for
fabricating electrodes using acceptable materials. The third step
was testing. Comparing composite electrode operational test results

with those of conventional electrodes pointed to new aperture
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configurations and operating parameters. Electrodes developed by
T. Helsin and A. Eubanks, NASA Goddard Space Flight Center were also
tested.

Section 2 of this report discusses the design considerations and
Section 3 briefly discusses test equipment. Electrode fabrication is
covered in Section 4. Section 5 gives test results and Section 6

contains the conclusions drawn from the effort.

4038-Final



SECTION 2

DESIGN CONSIDERATIONS

A number of questions regarding electrode design, electrode fabrica-
tion, and thruster operating parameters had to be defined before
proceeding. The design parameters considered included hole array.
design, thermal stress, resistance and minimum conductor thickness,

launch vibration stress, and perveance.

Since no theory exists on the behavior of composite ion extraction
systems, the electrode design procedure was a progression based on
past experience with the design parameters. The performance of small
conventional two grid electrodes was taken as the basis for the

design of composite electrodes. Some design considerations applicable

to composite grids are discussed briefly here.

2.1 APERTURE ARRAY

The following equations relate the aperture size, spacing, and number

of holes to the transparency of a hexagonal array.

N = 3R (R-1) +1 @)
S = C (2rR-1) (2)

s = cA/1+—‘3ﬁ(N-1) (3)

2 2
= L. D D 4
T 573 (C) ~ 0.907 (3) (4)
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Equation (1) shows that the number of holes in a complete hexagonal
array is 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, etc. Equa-
tions (2) and (3) are used to determine the area taken by the overall
array. Equation (4) shows that for 0.074 < (D/C) < 0.91 the trans-
parency will be from 50 to 75 percent. This is the range of interest
since discharge chamber power losses become too large for transparencies

below 50 percent and structural integrity is lost above 75 percent.

2.2 THERMAL CONSIDERATIONS

The thermal coefficient of expansion is an important factor in select-
ing insulator-conductor pairs which are compatible for accelerator
electrode fabrication and operation. The insulating materials selected
were AL995 alumina (99.5 percent) pure A1203), Lucalox (99.9 percent
pure A1203), Corning code 7052 glass, and Corning code 1723 glass
(alkali resistant). The conductor material used with AL995 and
Lucalox was niobium (columbium) since their coefficients of thermal
expansion are an extremely close match to the 1500°¢c temperature
reached during fabrication. Molybdenum-manganese was also used
successfully with AL995. Since the coating is only 0.001 to 0.004

thick, differences in thermal expansion were not a problem.

Kovar was found to be a good match for both glasses at low tempera-
tures, however, it was not suitable at the 1450°C glass coating
temperatures. Molybdenum was the final selection for the conductor
to be glass coated. Molybdenum has a coefficient of thermal expan-
sion slightly higher than glass. During fabrication, the glass
solidifies and the molybdenum contracts more than the glass during
cooling. This places the glass in compression at room temperature

and at the 100 to 200°C operating temperature.
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2.3 ELECTRICAL RESISTANCE OF THE CONDUCTOR

The acceptable electrical resistance of the conductor can be a design
constraint for very thin conductors such as molybdenum-manganese. A
minimum thickness approximation was calculated assuming a 5-inch
diameter electrode with all the current flowing to the center aperture
through 75 percent transparent stainless steel as a worst case. The
minimum conductor thickness was found to be 0.0001-inch for 1 ohm of
resistance. This is significantly thinner than all conductors under

consideration.

2.4 LAUNCH VIBRATION STRENGTH

In order to develop design parameters for flight electrodes, mechani-
cal strengths were calculated for l-inch and 5-inch diameter composite
electrodes. One-inch was a convenient laboratory size and 5-inches
would be suitable for a 1 to 2 mlb MESC-type flight thruster. The
material combinations considered were Lucalox-nicbium, Lucalox-
aluminum, Corning 1723 glass-molybdenum, and Corning 1723 glass-
Kovar. The insulator thickness (and aperture radii) vary continuously
from 0.010 to 0.080-inch. Conductors 0.001 and 0.020-inch thick were
considered. The 1969 Application Technology Satellite launch en-
~vironment specifications are used as representative design stresses.

The launch vibration considered is given in Table I.

TABLE 1

ATS SINUSOIDAL LAUNCH VIBRATION SPECIFICATION

Frequency Sweep Load Factor Amplitude
5~-22 2 octaves/minute 0.5 inch double amplitude

22-200 2 octaves/minute 12 ¢ (o-peak)

200-2000 2 octaves/minute 5 g (o-peak)
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The calculations were made by a computer in stages. The first calcu-
lation determined the neutral frequency as a function of electrode
transparency. This was done for each material combination, conductor
thickness, and insulator thickness. A hexagonal hole array was assumed
throughout. The worst case loading will occur when the resonant fre-
quency falls within vibration requirements of Table I. 1If resonance
occurs, the gain (Q) was assumed to increase from 1.0 to 25. This
means that at resonance the stresses will increase by a similar amount.
Vibration at resonance is therefore the most likely failure mode.
Failure will occur if the calculated stress exceeds the yield strengths
of the materials. 1In deéigning electrodes, the calculated stresses
will not exceed one-half the yield strengths of the materials. Re-~

presentative yield strengths are:

a. Lucalox - 20,000 psi

b. Niobium - 40,000 psi

¢c. Corning Code 1723 Glass - 40,000 psi
d. Molybdenum - 95,000 psi

The calculations indicated that all flat l-inch diameter composite
electrodes and dished 5-inch diameter composite electrodes are strong
enough. The natural frequencies were all above 2000 Hz and therefore
resonance and associated gains were avoided during sinusoidal vibra-
tion. The dished electrodes were assumed to have a 12-inch radius of
curvature since to be considered_as dished; an electrode was taken to

be a 10 degree or larger segment of a sphere.

Launch environment stress can be met by 5-inch diameter flat elec-
trodes if they are designed within specific thickness, aperture

diameter, and transparency limitations. These design limitations
have been determined for the two material pairs most likely to be

used for flight composite accelerator electrodes. These are niobium
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brazed to Lucalox (99.9 percent pure A1203) and Corning Code 1723
glass coated molybdenum. If the insulator thickness is 0.020-inch or
thicker and the conductors are 0.001 or 0.020-inch, then the highest
allowable design transparency is 80 percent. At a transparency of
60 percent, all material pairs examined for 5-inch flat composite

electrodes could withstand launch vibration.

The conclusion of this study is that 5-inch diameter composite elec-
trodes can be designed sufficiently strong to withstand a launch vi-
bration environment. This result implies that high streagth dished
composite electrodes are not necessarily required to meet launch

vibration as previously anticipated.
2.5 PERVEANCE

The perveance equation relates the desired accelerating potential
with aperture diameter, gap, and beam current. To achieve optimum
operation, it has been shown experimentally that the aperture diameter
should be approximately twice the gap. This essentially fixes the ac-
celerating voltage, aperture diameter, and gap of a given specific

impulse for an assumed perveance.

where

Perveance

Area of an aperture

L]

Gap distance for high voltage

H @ >
]

Beam current

it

Positive high voltage

<
+
]
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Using the screen-accelerator electrodes on the DG cesium ion thruster1
as typical, perveance was calculated to be 2.2 nanopervs/aperture

with a beam current density of 3 mA/cm2 of open area. Assuming a mass
efficiency of 100 percent, specific impulses from 1800 to 3500 seconds
correspond to voltages from 250 volts to 800 volts. This corresponds
to aperture diameters from 0.025.to 0.060-inch. Slightly larger aper-

tures were used in early composite electrodes for ease of fabrication.

Composite accelerator electrodes were found to be capable of higher
current density and higher perveance operation than conventional elec-
trodes used on the DG thruster. Data delineating composite acceler-

ator operation will be given in Section 5.
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SECTION 3

TEST EQUIPMENT

The test equipment consists of the thruster, instrumentation, power

supplies, and vacuum system.

A DG cesium electron bombardment ion thruster was used for most elec-
trode testing. Numerous reports are available which describe the DG

thrusters performance with full size electrodes.t

The first feed system used for composite grid tests was a simple
boiler. This was quickly found impractical and uncontrollable. A
5-pound zero-g type feed system with pressure relief valve, manual
vapor valve and a 0.50-inch diameter wick replaced the boiler feed
system. This system gave much better control and allowed reusing
the feed system without extensive work after each test. Some of the
problems experienced with the second feed system included periodic
sticking of the pressure relief valve, slow response time of the
vaporizer, contamination of the wick by air leaking past valves,

and occasional expelling of cesium into the arc chamber.

Slow vaporizer response time was remedied by incorporating a 0.25-
inch diameter vaporizer which operated ét a higher temperature. This
new vaporizer also seemed to have reduced expelling problems. Air
still diffused slowly through valves, when the system was stored in
air, however, the resulting contamination problems were reduced by

storing the system in dry nitrogen.
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The thruster was first modified to accept test electrodes by adding a
dummy screen electrode with a 1.0-inch diameter hole in the center.
Three mounting clamps held the composite electrodes in place during
operation. The contact patch of each mounting clamp on the electrode
was minimized to prevent non-uniform heat conduction and possible
thermal stress in the electrode. The second electrode mounting clamp
was a symmetrical stainless steel ring and shadow shields. This pro-
vided a uniform positive contact on the electrode and shielded the
thruster body from downstream electrons. The second mounting con-
figuration was used for the majority of the tests. The final mount-
ing was designed to hold flanged composite electrodes in a possible
flight type configuration. A flange on the upstream side of the
electrode insulator is rigidly clamped to the mounting screen by a
ring of machine screws. This mounting configuration was designed to
eliminate any mechanical or thermal stress caused by mounting the

electrode.
g

The power conditioning used for all testing on the 5-inch thruster
was the same as that used to operate other DG thrusters. It included
positive high voltage, negative high voltage arc, magnet, cathode,
manual feed valve, vaporizer, pressure relief valve, reservoir, and
neutralizer power supplies. The vacuum system controls, neutral
cesium detector power supplies and meter, and two dual channel strip
chart recorders were located near the power conditioning. Thermo-
couple meters monitored the temperatures on the accelerator, cathode,

manual feed valve, vaporizer, and reservoir.

An automatic control system ¢ontrolled the beam current, This was
done by sensing the beam current, comparing it with a manual reference,
and using the difference to adjust the vaporizer power. The control
system available had been previously used to control DG thrusters at

much higher beam levels and was insensitive to the low beam currents
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used on this program. To help compensate for the insensitivity, the

current sensor and amplifier gains were increased.

The problem of the insensitivity of the beam current control system
eventually led to the change to a 1.0-inch diameter thruster2 and

its associated feed and control systems. This small thruster simpli-
fied the control problem, but introduced non-unifofm plasma problems

which had been avoided by using the 5.0-inch thruster.
The tests were all performed in a 2 by 6 foot vacuum chamber. Two

parallel mechanical pumps-and two diffusion pumps with liquid nitro-

gen cooled baffles were used.
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SECTION &

ELECTRODE FABRICATION

The research program to develop composite accelerator electrodes con-
sisted of materials selection, development of fabrication techniques,

and configuration development.

First, insulator materials suitable for standing off high voltages in
hot cesium plasma were identified and tested. Candidate insulators
included alumina, boron nitride, fused quartz, Corning code 7052 glass,
Corning code 1723 glass, and berylia. Alumina, in the form of 99.5
percent pure AL995 and 99.9 percent pure Lucalox, is commonly used as
an insulator in cesium ion thrustersaﬁdwas not tested. Pyrolytic
boron nitride was unacceptable for flight electrodes because of its
lagi of strength, however, it was acceptable for laboratory use.

Fused quartz, 7052 glass, and 1723 glass were tested in a worst-
possible-case experiment for compatibility with 300°C cesium vapor

for 18.5 hours. Extrapolating the weight losses, an electrode made

of 1723 glass would have a mass loss of 0.86 percent during a 1000
hour operation. This worst-case is certainly acceptable for labora-
tory work and possibly for flight electrodes. The 7052 glass had

six times the mass loss of the 1723 glass. The fused quartz was
acceptable before machining, however, if holes were drilled or beveled

after fusing, the surface was attacked by cesium vapor.

Processes for connecting a conductor to the selected insulators were
then investigated. The conductor which most nearly matched the co-
efficient of thermal expansion of alumina is niobium (columbium).

An EOS proprietary braze process was used to bond 0.020-inch niobium
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sheet to a 0.037-«inch thick alumina disc. This process was the basis
of the brazed electrode fabrication technique discussed later. An
attempt was made to plasma spray molybdenum frit onto alumina, but
adhesion was poor and the process was abandoned. A similar alumina
plasma spraying technique was attempted on molybdenum and niobium
substrates also with poor adhesion. A thin molybdenum-manganese
metalizing layer was applied to alumina with good adhesion. Elec-
trodes fabricated using the molymanganese process are discussed later.
Attempts to metalize the pyrolytic boron nitride with palladium
resulted in weak bonds. It is felt this technique could have been
satisfactorily developed with the proper testing program. Pyrolytic
boron nitride insulators are only suitable for electrode configura-
tion testing in the laboratory and therefore this process was
abandoned. Attempts at ion plating aluminum on alumina yielded poor
bonds and was also abandoned for lack of development time.

o
No attempts to coat glass on a substrate were conducted on this pro-
gram since similar work was underway at NASA Goddard. A summary of
the techniques for producing bubble-free glass coatings on molybdenum
substrates as developed by T. M. Heslin and A. G. Eubanks of Goddard
Space Flight Center is reported in GSFC X-735-70-204, April 1970.

A technique for applying a coating of Corning code 1723 glass to
alumina was also developed at NASA Goddard. Electrodes produced by

this technique were not tested at this writing.

The last step in developing techniques for fabricating composite elec-
trodes was to devise electrode configurations, test them, and systemati-
cally modify the format to produce the desired electrodes. A list of
all of the electrodes fabricated and/or tested at EOS is given in
Table II. The development of the fabrication procedure is delinated
for brazed alumina electrodes and molymanganese metalized alumina

electrodes.
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4.1 BRAZED ALUMINA ELECTRODES

The first attempts at vacuum niobium to alumina using the EOS proprie-
tary braze technique was performed on non-perforated discs. Adjust-
ments in surface flatness and the amount of weight on the brazing

fixture gave an excellent ternery bond.

The alumina insulators then had to be perforated with the appropriate
hole matrix. Two methods exist for perforating the. alumina discs.
The holes can be ground using diamond tools. A; ultrasonic drill,
such as the UMTI-3 Rotary Ultrasonic Machine tool by Branson Sonic
Power, greatly reduces the perforating time and produces diameter

and position tolerances of +0.001 inch. An alternate method is to
drill the holes in unfired alumina and then fire the disc. This
alternate method produces shrinkage which, after compensation, gives
tolerances of +0.002 inch. The first method is approximately three

o
times as expensive as the alternate.

Niobium was selected as the electrode conductor material because its

coefficient of thermal expansion is an excellent match with alumina.

A series of tests were run to determine whether the niobium and/or
braze should be drilled before or after brazing. Several electrodes
were lost during brazing due to braze filling around pins used to
locate the perforated niobium and/or braze. After brazing, the braze
material is very hard and the niobium is soft. This makes machining
brazed electrodes difficult. The final procedure uses perforated
braze washers and non-perforated niobium. This reduces the amount of
hard braze in the holes which must be drilled after brazing and

minimizes hole alignment problems.
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Testing the composite electrodes indicated that beveling the down-
stream side of the niobium was necessary for minimizing drain currents.
This eliminates the accelerator electrode material which directly in-

tercepts a well focused ion beam.
The machining process can be summarized as follows:

a. Drill holes in the braze and niobium using the holes in the
alumina as guides. Drills are high speed steel or carbide.
Alcohol is used as a lubricant. The electrode must be backed
with wood or fiberboard. Holes are drilled 5 percent under
size to avoid breaking the alumina.

b. Bevel the niobium with a 90O carbide countersink using tooth-
paste and water as a lubricant. Use a low speed drill in
fixed position and raise the backed electrode to the drill.

c. Hone the electrode with 27y alumina powder with 60 to 80 psi
air pressure. Hone in the holes from the alumina side (up-
stream) only.

d. Operate the composite electrode on the thruster for a few
hours. It is suspected that the ion beam, cesium plasma,
and heat change the properties of the braze material making
it easier to do the final machining.

e. Bevel the niobium with a 12 flute ball reamer about twice
the diameter of the holes.

f. Hone the electrode from the upstream side.

g. Wash with acetone, alcohol, distilled water, and then dry
it in a vacuum oven.

The final brazed alumina electrode configuration was developed for
several reasons. First, there was a fairly high probability that
some alumina insulators were being damaged during mounting on the
thruster. Second, the clamping method being used provided rigid
support by a stainless steel mounting screen. When heated, this
mounting screen could apply force to the clamped composite electrode
either by differential coefficient of thermal expansion or by warpage.
Third, axial and radial thermal gradients could be produced by the

large radiating mounting clamp.
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To eliminate these problems a mounting flange was brazed to the per-
imeter of the upstream side of the electrode insulator. A convolution
helped absorb stresses from the mounting screen. A large radiating
clamp was not necessary so thermal gradients were minimized. Opera-
tional tests have demonstrated the effectiveness of this mounting
flange. It is presently thought that a flight composite accelerator

electrode would have a similar mounting flange.

4.2 MOLYBDENUM-MANGANESE METALIZED ALUMINA ELECTRODES
-~

Moly-manganese metalizing is a process commonly used for coating
ceramics with metal which can be connected to other metals to form
vacuum tight seals. The alumina insulators used were AL995 (99.5
percent pure) and Lucalox (99.9 percent pure). The moly-manganese

can be applied by painting it on in solution or by applying molyb-
denum-manganese tape. The coated electrode is dried and then fired
a¥ 16250C in a forming-gas atmosphere. This high temperature removes
all tape remnants and binders which are applied with the moly-
manganese. The resulting conductive coating is approximately 0.0005-
inch thick. The first moly-manganese metalized alumina electrode was
nickel plated to a thickness of 0.005-inch for added strength. During
testing, the metalizing lifted off the alumina insulator. This is
attributed to the stress induced by the difference in the coefficients
of thermal expansion. Subsequent electrodes eliminated the nickel

plating and no further adhesion problems were encountered.

Operational tests also indicated that care must be taken to avoid
moly-manganese inside the holes. On operational electrodes, the
downstream side of the holes were lightly beveled using a diamond

tool with alcohol lubricant.
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The final version of the moly-manganese metalized alumina electrodes
was sent to Goddard Space Flight Center where a coating of 1723
glass was applied to the alumina. This coating improved the optics
of the grid, covered the relatively porous alumina with non-porous
glass, and provided a medium by which a mounting flange and shadow
shield could be attached to the basic composite electrode. Figure 1

shows such a grid fabricated at Goddard Space Flight Center.
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1723 Glass Aluminum and Moly-Manganese Electrode No. 33 (Upstream)

Figure 1.



SECTION 5

TESTING

A test sequence was derived to start operational testing with known
electrodes on the familiar DG thruster. Composite accelerator elec-
trodes are ultimately planned to be used om the advanced MESC (magneto-
electrostatic containment) thruster. The relatively uniform plasma
near the axis of the DG discharge chamber was used to simulate the
uniformly distributed plasma of the MESC thruster. This was done suc-
cessfully using a conventional screen and accelerator electrodes with
a uniform hole pattern (type 1). The next step was to test various
composite accelerator electrodes using the same uniform hole patternm
as on the conventional two grid system. The aperture diameter, trans-
pargncy, specific impulse and beam current were then to be modified in

a logical progression as shown in Table III.

TABLE III1
TEST PLAN
Type D C W T H ‘V+ Isp No. S
No. | (in.) | (in.) j(in.) (% | (in.) | (kV) |(sec.)|Holesg (in.)
1 0.076 |0.100 |0.024 | 52.3 | 0.020 { 1150 | 3860 | 61 0.900
2 |10.076 |0.091 |0.015}63.3 10.020 | 1150 3860 | 61 [0.773
3 | 0.0465]0.0615(0.015 | 51.9|0.010 | 595 2780 | 127 (0.799
4 | 0.0465]0.0565]0.010 | 61.4 | 0.010 | 595 2780 (127 [0.735
5 [0.031 |0.041 [0.010) 51.7 | 0.005 | 342 2100 | 271 |0.778
6 {0.031 [0.035 [0.004[71.0]0.005| 342 | 2100 |[331 |0.735

Electrode type Nos. 1, 2, and 3 were fabricated and operationally tested.

Several undefined characteristics of composite electrode fabrication,
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operation, focusing, and ageing made the testing of more advanced type
number of electrodes premature. The composite electrodes operated
well with voltages (V+) and corresponding specific impulses far below
those anticipated in Table ITI. The program goal was to operate an
advanced composite accelerator electrode for 1000 hours. This goal was
not achieved although some promising configurations were developed

near the end of the program.

A chronological summary of all testing done on this program at EOS is
‘given in Table IV. Unless otherwise indicated, electrodes had a 61-
hole pattern, approximately one inch in diameter. The seven tests
which were run for over 100 hours are reported further and compared
to the conventional screen-accelerator electrode operation which was

run as a baseline.
54k TEST THRUSTER WITH CONVENTIONAL ELECTRODES

The DG cesium electron bombardment thruster with dummy screen electrode
was installed in a 2- by 6-foot vacuum chamber. Standard screen and
accelerator electrodes with an alumina spacing washer between them were
installed on the thruster. The accelerator electrode had 61 holes of
0.076-inch diameter with a center-to-center spacing of 0.100-inch

(type 1) and was identical to the conductor of the first composite
electrodes tested. The gap was equal to the insulator thickness of

the first composite electrode. The screen had countersunk holes
slightly larger than the accelerator holes. These were designed to
approximate the operation of the first composite electrodes and serve

as a baseline for data.
A simple boiler feed system was used for the first run. The run was

characterized by expelling of cesium into the arc chamber and a lack

of feed control. A 5-pound reservoir with a manual valve, pressure
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relief valve, and vaporizer were substituted for the boiler feed sys-
tem. Thermocouples were placed on the reservoir, vaporizer, manual
valve, cathode, and accelerator electrode. During pumpdown of the
vacuum chamber, the manual valve was closed and the pressure relief
valve was open. When a pressure of 10_5 torr was reached, the manual
valve was opened. The pressure relief valve was left open until the

. o ,
reservoir was heated to 100°C, and then it was closed.

The thruster was operated four times for 0.4, 7, 5.75, and 3.25 hours

as shown in Table IV. Automatic controls were used to feed back beam
current and regulate vaporizer temperature. During fifth operation

of the thruster with conventional electrodes, the operational character-
istics of the systemwere completely mapped. Data systematically taken dur~

ing a 24-hour run is summarized for four specific impulse domains on Table V.

The perveance per aperture and percentage drains are the critical param-
eters. The perveance indicates how much high voltage is necessary to
extract the desired beam. The percentage drains describe the effective-
ness of the aperture configuration, indicate the focusing of the beam,
and characterize the match between the arc chamber and accelerator
grids. The perveance per aperture for conventional electrode operation
varied from 4 to 6 nanopervs per aperture. The percentage drains var-

ied from 2 to 4 percent
5.2 BRAZED ALUMINA ELECTRODE NO. 10 - 150 HOUR TEST

Electrode No. 10, consisting of 0.005-inch thick niobium brazed to
0.037-inch thick AL995, was installed on the DG cesium electron bom-
bardment thruster for testing. The electrode had 61 unbeveled holes,
0.072 inch in diameter on 0.09l-inch center-to-center spacing. The
thruster was operated for 1 hour 18 minutes continuously; 32 minutes
were with drain currents below 3 percent of the beam current. Numerous
small arcs in the apertures accompanied higher drain currents near the

end of the test.
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Electrode No. 10 was removed from the thruster and inspected. The
insulator in the holes was coated with a conductor which is thought to
be a combination of a braze material and niobium. Careful examination
revealed that the braze and niobium extended into the aperture so that
the accelerator electrode could be directly bombarded by the cesium
ion beam. It is believed that this direct impingement caused sputter-
ing and evaporation of the conductor which plated out on the insulator
in the apertures. This conductor in the holes could be evaporated or
eroded by direct ion beam impingement if the deposition rate is low.
Since the deposition rate was high, the conductor in the apertures
could cause further defocusing which, in turn, causes an increase in
the deposition rate. This eventually leads to surface breakdown and
arcing. This theory was supported by a previous materials analysis

and by operating composite electrode No. 11.

Elactrode No. 10 was beveled on the downstream side with a 120° cham-

fer. This was accomplished with a carbide countersink. The electrode
was preheated to 120°C before starting the thruster using the neutral-
izer filament. Thruster operation was greatly improved due to bevel-

ing the electrode and the preheating. The thruster was operated

continuously for 150 hours.

The percentage drains are given as a function of time in Figure 2.
After the first 30 hours of operation, the percentage drains increased
steadily. Typical operating points are given in Table VI. Electrode
No. 10 is shown in Figure 3 after 150 hours of operation. The two
dots on the periphery of the insulator are chips from machining which

did not produce insulator breakdown.
Many of the holes had the insulators partially coated. A similar coat-

ing found on the ground screen tests underwent spectrographic analysis.

The major constituents were niobium and aluminum which could have come
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from the niobium accelerator electrode and alumina insulator. There
were also traces of numerous other elements including the constituents
of the braze material. Careful inspection of the electrode showed
that the braze material had not been removed from the path of the iomns.
It is suspected that the coating in some apertures is partially braze
material. The mass reduction after electrode operation was only 0.04

percent which is nearly the inherent balance error.

5.3 BRAZED ALUMINA ELECTRODE NO. 10 - 200 HOUR TEST

Electrode No. 10 was first operated on 5 January 1970, for 1.3 hours
with drain currents starting at 1.53 percent and rising to 10 percent.
The electrode was removed from the thruster and the downstream aide
of the electrode was beveled. All of the niobium in the apertures

was removed, however, the hard braze material remained. The electrode
was operated again on 12 January 1970 and ran for 150 hours as des-
cribed in subsection 5.2. Drain currents were below 4 percent for

35 hours and below 10 percent for 120 hours. The electrode was re-
moved from the thruster and the braze material was carefully removed

from the apertures.

On 4 March 1970, the electrode began its final operational test for
200 hours. Data for typical operation is given in Table VII. The
sparking rate was very low throughout the test. The percentage drain
currents were below 4 percent for 120 hours, but rose sharply at that
time as shown on Figure 4. The mass loss during operation was 0.09
percent. Inspection of the electrode revealed that numerous cracks,
visible in Figure 5, were responsible for the high drain currents.
The cause of the cracking is not known. There may be a high thermal
gradient from the upstream to the downstream side of the electrode
which could cause stress. Thermal expansion could cause a force from
the electrode mounting clamp. Fastening a thermocouple to the accel-

erator electrode might also weaken the alumina insulator. Long term
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electrical breakdown could cause crack propagation similar to '"treeing".
Another theory is that there are residual stresses from fabrication
which help to propagate cracks with time and other forces. A new mount-
ing technique was employed later in the program which eliminated the
first three possibilities. Long term electrical breakdown is unlikely
since the electric field is only 16 volts/mil. Residual stresses from
fabrication can be eliminated by using different machining techniques

and by heat treating.

5.4 THICK 7052 GLASS COATED ELECTRODE - 268 HOUR TEST

The thick 7052 glass coated molybdenum accelerator electrode was fab-
ricated by T. Heslin at NASA, Goddard Space Flight Center. The glass
electrode appeared bubble free with only two imperfections. They did
not cause problems during testing. _The glass thickness varied from
ug{to 0.020 inch thick at the edge and center to approximately 0.005

inch thick on the webs of the peripheral holes.

The glass coating was not flat so a soft copper gasket was used between
the glass surface and mounting screen. Moderate clamping sealed the
joint and no further trouble was experienced. Data points for typical
operation are given in Table VIII. Near the end of the test, 10"4
torr of argon gas was let into the vacuum chamber and the beam produced.
a visible glow. The beam was collimated to less than a 15° included
angle. The sparking rate was low for most of the test. The percent-
age drain currents remained below 4 percent for 125 hours as shown in
Figure 6. TFailure of the electrode was more of a degradation than a
catastrophic failure. The test was terminated because a web between
two peripheral holes was missing, as shown in Figure 7. The web fail-
ure opcurred where the glass coating was thinnest. Microscopic exami-

nation showed chipping of the glass in the apertures, cracks through

the webs, ion beam erosion where cracking occurred, and remelting of
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Figure 7. Thick Corning 7052 Glass Coated Electrode after
268 Hour Test
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glass over the cracks (possibly in that order). Some of the periph-
eral webs have brownish spots on them which may be due to the effects
of heat and cesium on 7052 glass. All breakdown occurred where the
glass coating was thinnest, i.e., on the webs of the peripheral holes.
The only exception was at the copper mounting gasket. This would indi-
cate that a thicker glass coating on the peripheral webs and a more

alkali resistant glass (1723) should correct the wear out problem.

A thick 1723 glass coated accelerator electrode was fabricated by

T. M. Heslin, and was operationally tested at E0S. The startup of

the thruster with the glass electrode was very sparky with 60 percent
drain currents. The maximum gap voltage was 596 volts with 5.3 milli-
amperes of beam. The test was terminated after starting the thruster
twice for a total operating time of about an hour. The glass was
eroded from the outside portion of the peripheral apertures. This
mogde of failure is indicative of the glass coating thinning at edge
apertures. The glass thickness was later measured to be less than
0.001 inch at the breakdown sites. The thick 7052 glass electrode
previously mentioned did not fail in this mode. The test was not of
sufficient duration to determine the long term effects of cesium plas-
ma on 1723 glass. It is felt that the thin glass at the edge of the

hole array is preventing long term tests.

5.5 MOLY-MANGANESE METALIZED ALUMINA ELECTRODE NO. 15 - 212 HOUR TEST

The first metalized composite electrode, A, was fabricated by moly-
manganese metalizing an 0.037-inch thick alumina disc perforated with
61 holes (type 1) of 0.076-inch diameter on 0.100-inch center-to-
center spacing for a 52 percent transparency. A nickel plating was
added to give a conductor thickness of 0.005 inch. The conductor ex-
tended about 0.012 inch into the apertures to effectively reduce the
insulator thickness to 0.025 inch. The hole diameter insulator thick~

ness ratio was then 3 rather than 2 as in all previous alumina niobium
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composite electrodes. The thruster was operated for 60 minutes with
drain currents ranging from 2 percent to 162 percent of the beam cur-

rent. The test was concluded when drain currents continued to increase.

Electrode A was removed from the thruster and cleaned using water and
then a dry hone. The clean electrode was then reinstalled onto the DG
thruster with a dummy screen and positive mounting clamp. The elec-
trode operated continuocusly for 56 minutes of which 47 minutes were

completely without any high voltage arcing.

After the second test, electrode A was removed from the thruster.
There was a CsOH coating on the dummy screen and a black coating in
the aperture of the insulator and conductor. A shiny ring on the up-
stream side of the conductor in the aperture was visible due to direct
ion impingement. The nickel plated moly-manganese conductor seemed to
be bubbling and lifting off the insulator. The electrode was washed
With“%ater, dried by force air, and dry honed. The clean composite
electrode was reinstalled on the DG thruster and operated. Drain cur-

rents were higher than the beam currents.

The moly-manganese electrode was removed from the vacuum chamber and
examined under a microscope before any cleaning. Numerous cracks in
the insulator accounted for the high drain currents. The cracks were
parallel which indicated the alumina was cracked in tension during
cleaning with the dry hone. Future cleanings with the hone used a
lower air pressure and a fixture to uniformly support the electrode

and keep it flat.

The conductor was found to be lifting off the alumina. This was due
to the difference in coefficients of thermal expansion and differences
in bond strengths. The nickel overplate expands at a high rate com-

pared with molybdenum and alumina. This causes stress which tends to
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blister the nickel. The bond between the molybdenum and alumina is a
brittle oxide bond whereas the bond between the nickel and molybdenum
is relatively strong. The force applied by the expanding nickel caused
the alumina to moly-manganese bond to break, separating the conductor

and insulator. This did not occur where the plating had extended into

the apertures.

A second moly-manganese metalized electrode, designated No. 15, was
fabricated, but was not plated with nickel. Electrode No. 15 was
operated without removing the metalizing which partially coated the
inside of the holes. The percentage drains were below 5 percent for
about 50 hours of the 56 hours operational test. After extinguishing
the arc, there were residual drain currents. These were gone 2 min-
utes after shutdown. The residual drains may indicate that cesium
vapor was condensing on the electrode. Inspection of the electrode
ségwed erosion of the moly-manganese metalizing in the holes and a
conductive coating (not cesium) in the holes. This coating is proba-
bly moly-manganese which has been dislodged by direct exposure to the

ion beam.

The MoMn electrode was then cleaned with a dry hone and beveled on
the downstream side. This eliminated all conductive material in the
path of the ion beam. The thruster was operationally tested with MoMn
electrode No. 15 for a second time. The enlarged holes in the MoMn
accelerator grid required high gap voltages for the same beam current
and therefore was operated at relatively low perveance. The test ran
for 212 hours with low percentage drains for 172 hours as shown in
Figure 8. Typical operating data, given in Table IX, shows that the
perveance was reduced from previous tests. This composite electrode
had the lowest drain currents of any tested. This is attributed to
the very thin accelerator electrode and to the downstream beveling.

A post-test inspection showed that the high drain currents resulted

from a thin conductive coating in the apertures.
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The coating was cleaned from the electrodé. using the dry home. The
upstream and downstream bevels were cleaned with the diamond counter-
sink. The thruster was restarted and operated for 5.25 hours with
high drain currents. The electrode was withdrawn from the thruster
and inspected for cracks. None were found. The electrode was cleaned
with the dry hone and restarted. It operated for 40 hours before a
power failure caused an emergency shutdown of the vacuum system. The
next morning the test was continued for an additional 26.5 hours. The
drain currents were higher than 10 percent throughogt the 66.5 hours
of testing. External examination of the electrode showed that the

drains were caused by cracks in the electrode. The test was terminated.

5.6 FLANGED LUCALOX ELECTRODE NO. 25 - 104 HOUR TEST

Composite Electrode No. 25 was a 0.005-inch thick niobium electrode
brazed to a 0.037-inch thick Lucalox insulator. On the periphery of
thewhpstream insulator a mounting flange was brazed as shown in Fig-
ure 9. A convolution in the 0.010-inch thick mounting flange was in-
tended to absorb stresses due to improper mounting and thermal gradients.
This mounting configuration meets the requirements of a flight type
electrode mount. The relatively small heat dissipating area insured

a uniform temperature throughout the composite electrode.

The thruster startup was very smooth and control was good througﬁout
the test. During the first test the drain currents reduced steadily
for 6.25 hours and then increased steadily for the next 14 hours when
the test was terminated. This test ran as expected since it was known
that the hard braze material was still in the holes. The electrode
was removed from the thruster and cleaned with a 12 flute ball reamer

and the dry hone.

The thruster was restarted smoothly and operated for 104 hours. The

drains decreased for the first 8 hours and then began to increase

4038-~Final 49



670122

Figure 9. Flanged Lucalox Electrode No. 25 after
104 Hour Test
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slowly for the remaining 96 hours. The test was terminated with 7.8
percent drain currents as shown in the percentage drains histogram,
Figure 10. Typical operational data is given in Table X. The perve-
ance is quite acceptable even though a relatively low beam level was
selected for operation. The operational characteristics indicated
that some of the braze material was probably left in the holes and
was building up a coating in those holes. Removal and inspection

proved the theory correct.

5.7 FLANGED 7052 GLASS COATED ELECTRODE - 320 HOUR TEST

The flanged 7052 glass coated molybdenum accelerator electrode was
designed to test the center portion of the glass coating without worry-
ing about edge effects. The thin glass around the periphery of previ-
ous glass coated grids has always limited the duration of operational
tests. The glass coating at the center of the electrode was measured
to Be 0.015-inch thick. The mounting flange enabled flight type mount-
ing on the thruster and provided a shadow shield for the adhesive con-
necting the flange to the glass. This mounting procedure also thermally
isolated the electrode allowing the temperature to be more uniform. An
additional shadow shield was attached to the accelerator grid to pre-
vent surface breakdown of the adhesive on the downstream side. The
0.75-inch diameter hole in the center of the mounting flange allowed
the plasma to directly bombard only the 61 holes of a type 1 configu-
ration. The Ceramabond cement filled in two rows of the peripheral

holes.

The thruster started smoothly with 6.17 percent drain currents. In
15 minutes the drains had dropped to 2.63 percent. During the next
30 minutes a control system malfunction caused the arc chamber to have
too much cesium resulting in a very high arc current for a few minutes.

After the automatic control of the thruster recovered, the percentage
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drains were 13.5 percent and dropping. The percentage drain currents
continued to drop for the next 190 hours as seen in Figure 11. At

190 hours an upward trend started for the percentage drains which ava-
lanched at 320 hours. Table XI shows that the thruster operational-
parameters were very consistent throughout the test, except for the
control runaway during the first hour. It is not possible to assess
what damage, if any, was done to the electrode during the control run-
away. Such a runaway can be caused by malfunctioning accelerator elec-
trodes or by several other components in the ion\anine system. The
possibility of a control runaway was eliminated in subsequent tests

by controlling the vaporizer current with the positive high voltage

supply current (I+) rather than the beam current (IB).

The test was officially terminated when the thruster could no longer
be operated with the same parameters. However, the thruster was oper-
ated for an additional 18 hours with a reduced beam level of 3 milli-
amperes. It was hoped that the high drain currents were due to a
temporary condition, but conditions did not improve, so the test was

stopped.

The electrode was then disassembled for post-run evaluation. The up-
stream and downstream sides of the glass coated electrode are shown in
Figures 12 and 13, respectively. These pictures were taken jmmediately
after removal from the vacuum chamber. The cesium hydroxide coating
visible as splotches on the flat metal surfaces is due to thruster
shutdown and does not affect thruster operation. The Ceramabond ce=-

ment filling in the apertures appeared to be unharmed in any way.

A microscopic examination of the electrode after operation revealed

the following observations:

a. The high drain currents were primarily due to a few eroded
holes at the edge of the beam. This is visible in Figures
12 and 13. On the upstream side, one web has no glass and
one web has the glass severely eroded.
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Figure 12. Flanged 7052 Glass Coated Electrode after
320 Hour Test (Downstream Side)
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Flanged 7052 Glass Coated Electrode after

Figure 13.
320 Hour Test (Upstream Side)
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b. The inside mounting screen has a deposit near the eroded
hole only. The deposit appears to be burnt ceramic and
glass.

c. Several of the bubbles, which were accidentally produced
during glass coating, burst during operation. Some holes
look burned as if an arc passed through them. The burned
bubble holes appeared all over the electrode with the major-
ity near the edge of the glass coating.

d. The glass around the eroded hole is amber colored.

e. The glass in the area exposed to the cesium plasma has a gold
colored deposit between the 7052 glass and the molybdenum
accelerator grid (or between layers of glass). The gold color
is not uniform and looks like pure cesium. This is character-
istic of alkali attack on glass.

f. There is a white powdery substance between the mounting flange
and the glass coating.

g. The glass surface was unharmed and clean except where bubbles
burst.

The two main problems with the electrode seem to be bubbles in the
finzi glass coating and alkali attack of the 7052 glass. Bubble-free
1723 glass coatings were subsequently produced by T. M. Heslin at the
Advanced Materials Branch of NASA, Goddard Space Flight Center. The
lack of bubbles eliminated the first problem. Corning code 1723 glass,

resistant to alkali attack, was adopted to eliminate the second problem.

5.8 GLASS COATED BRAZED ALUMINA ELECTRODE NO. 30 - 165 HOUR TEST

Composite electrode No. 30 was fabricated by perforating a 0.037-inch
thick AL995 alumina disc with 61 holes, 0.076-inch in diameter on
0.100-inch centers. This alumina insulator was then brazed to a match-~
ing niobium grid 0.005-inch thick. At this stage, the composite grid
was called electrode No. 6 and was operated for 1.3 hours on 4 Novem-
ber 1969. The percentage drains during the test were very high and

microcracks were suspected.
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Since that early test, methods to reduce the possibility of cracking
were established. The primary mode of degradation of brazed alumina
electrodes became a conductive black coating in the apertures. This
black coating is thought to be trapped by the materials surface poros-
ity. GSFC developed a technique for applying a 0.002-inch thick coat-
ing of Corning code 1723 glass to the alumina insulator, thus sealing
the surface. Electrode No. 6 was sent to GSFC and the alumina was
glass coated without significantly changing the aperture, size or
shape. Unfortunately, thermal gradients during the glassing produced
cracks which were glass covered. The now glass-coatéd, brazed alumina
electrode, No. 30, was réturned to EOS for operational testing in

January, 1971.

Upon return to EO0S, electrode No. 30 was cemented to a convoluted nio-
bium mounting flange using Ceramabond 503 and fired at 450°C for 1 hour
ip dry argon. A stainless steel foil shadow shield was spot welded to
the downstream niobium accelerator electrode. Electrode No. 30 was

mounted on the 1.5-inch thruster with a 5-pound feed system.

A newly derived startup procedure was followed exactly for a very
smooth startup. The beam was brought up to 6.25 milliamperes, with

a percentage drain of 3.7 percent. V+ was 500 volts and V_ was 250
volts. After 18.5 hours of operation, the percentage drains drifted
up to 11.7 percent. The v, was raised to 600 volts with V_ at 200
volts to improve focusing after 48 hours. The beam reference was
lowered to 4.6 milliamperes with 20.6 percent percentage drains. The
parameters were kept in this range for the remainder of the 165 hours
of operation. The percentage drains seemed to rise exponentially to
a terminal value of 58.8 percent. The test was terminated to deter-

mine the cause of the high percentage drains.

The high drain currents were caused by cracks in the alumina which had

been covered by glass before the test started. The thin layer of glass
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was not sufficient by itself to stand off the 835-volt maximum gap
potential difference. There was mno black conductive coating in the
apertures as experienced by previously brazed alumina electrodes.
The Ceramabond had sufficient strength, but was discolored and wore
conductive, possibly from back-sputtering. The 1723 glass is still
present on the alumina except where dielectric breakdowns occurred

through the cracked alumina.

This test was very encouraging and appeared to indicgpe that the devel-
opment was progressing. It is believed that a glassed-alumina elec-
trode has the potential for solving the lifetime problems experienced
on this program. The two problems mentioned here, cracked alumina

and Ceramabond bonding of flange to electrode, have been avoided in

the most recent fabrication effort by Mr. Heslin at GSFC. It is antic-

ipated that the electrode, No. 37, will give excellent performance.
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SECTION 6

CONCLUSION

The primary objective of this program was to demonstrate the feasi-
bility of incorporating composite accelerator grids on cesium electron
bombardment ion thrusters. This objective was met by demonstrating
operation at low specific impulse, from 1800 to 3500 seconds with
three types of composite grids. However, as with ﬁercury bombardment
thrusters, development effort is still needed to extend lifetime to
useful lengths. The goal of 1000 hours operation was not achieved.
Several trial tests were made, but none extended significantly beyond
a third of the goal. It is clear that more investigation is needed

to identify and understand the limitations of electrode life. Never-

thgéess, much progress was made in the use of composite grids.

High transparency electrodes consisting of niobium brazed to alumina
and molybdenum-~manganese metalized alumina were brought from first
simple attempts to functioning, effective ion extraction systems.
Corning 7052 and 1723 glass coating techniques were developed by

T. M. Heslin and A. G. Eubanks at NASA/GSFC in a parallel effort and

these electrodes were operated successfully.

The major problem experienced during the program was electrical break-
down of the electrodes after extended testing. Operation would be
ideal for as long as 170 hours before decay would slowly set in. The
cause of the breakdown appeared to be a conductive coating forming in
the apertures of the alumina electrodes. The source of the coating

was not positively identified during the program. Sputtered material
from the chamber walls or from ion impingement on the accelerator

conductive surface is the most likely candidate.
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In hopes of eliminating the coating problem which appeared to be en-
couraged by the porous nature of the alumina, efforts were turmned to
glass coated molybdenum grids. The fused surface of the glass re-

sisted the coating, but thickness control fabrication, particularly
near the edges was a continuing problem. Grids would operate satis-

factorily for a while, then break down.

The next logical step is hybrid composite electrodes composed of glass
coated alumina with appropriate conductor, shadow shield, and mounting
flange. By making use of the non-~coating properties of glass and the
electrical isolation and geometric control of alumina, an attractive
solution seems available. Such an electrode has been fabricated

through a joint effort of EOS and GSFC, but has not been tested at

this writing.
TE; lifetime problem has been elusive, but a solution appears to be

nearly at hand. Continued investigation could well bring the advan-

tages of composite electrodes to useful application on flight hardware.
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